Oversulfated Chondroitin Sulfate Inhibits the Complement Classical Pathway by Potentiating C1 Inhibitor
نویسندگان
چکیده
Oversulfated chondroitin sulfate (OSCS) has become the subject of multidisciplinary investigation as a non-traditional contaminant in the heparin therapeutic preparations that were linked to severe adverse events. In this study, it was found that OSCS inhibited complement fixation on bacteria and bacterial lysis mediated by the complement classical pathway. The inhibition of complement by OSCS is not due to interference with antibody/antigen interaction or due to consumption of C3 associated with FXII-dependent contact system activation. However, OSCS complement inhibition is dependent on C1 inhibitor (C1inh) since the depletion of C1inh from either normal or FXII-deficient complement plasma prevents OSCS inhibition of complement activity. Surface plasmon resonance measurements revealed that immobilized C1inhibitor bound greater than 5-fold more C1s in the presence of OSCS than in presence of heparin. Although heparin can also inhibit complement, OSCS and OSCS contaminated heparin are more potent inhibitors of complement. Furthermore, polysulfated glycosaminoglycan (PSGAG), an anti-inflammatory veterinary medicine with a similar structure to OSCS, also inhibited complement in the plasma of dogs and farm animals. This study provides a new insight that in addition to the FXII-dependent activation of contact system, oversulfated and polysulfated chondroitin-sulfate can inhibit complement activity by potentiating the classical complement pathway regulator C1inh. This effect on C1inh may play a role in inhibiting inflammation as well as impacting bacterial clearance.
منابع مشابه
Oversulfated Chondroitin Sulfate Binds to Chemokines and Inhibits Stromal Cell-Derived Factor-1 Mediated Signaling in Activated T Cells
Oversulfated chondroitin sulfate (OSCS), a member of the glycosaminoglycan (GAG) family, was a contaminant in heparin that was linked to the 2008 heparin adverse events in the US. Because of its highly negative charge, OSCS can interact with many components of the contact and immune systems. We have previously demonstrated that OSCS inhibited the complement classical pathway by binding C1 inhib...
متن کاملOversulfated chondroitin sulfate interaction with heparin-binding proteins: new insights into adverse reactions from contaminated heparins.
An oversulfated chondroitin sulfate (OSCS) was identified as a contaminant to pharmaceutical heparin and severe anaphylactoid reactions were ascribed to this contaminant. An examination of the biochemistry underlying both the anticoagulant activity and the toxic effects of oversulfated chondroitin sulfate was undertaken. This study demonstrates that the anticoagulant activity of this oversulfat...
متن کاملComplement C1 Esterase Inhibitor Levels Linked to Infections and Contaminated Heparin-Associated Adverse Events
Activation of kinin-kallikrein and complement pathways by oversulfated-chondroitin-sulfate (OSCS) has been linked with recent heparin-associated adverse clinical events. Given the fact that the majority of patients who received contaminated heparin did not experience an adverse event, it is of particular importance to determine the circumstances that increase the risk of a clinical reaction. In...
متن کاملEffect of supraphysiologic levels of C1-inhibitor on the classical, lectin and alternative pathways of complement.
C1-inhibitor is increasingly used experimentally and clinically in inflammatory conditions like septicemia and ischemia-reperfusion injury. Several mechanisms may account for the anti-inflammatory effects of C1-inhibitor, including inhibition of complement. The aim of the present study was to investigate and compare the supraphysiologic effect of C1-inhibitor on the three complement pathways. N...
متن کاملPeptide Inhibitor of Complement C1, a Novel Suppressor of Classical Pathway Activation: Mechanistic Studies and Clinical Potential
The classical pathway of complement plays multiple physiological roles including modulating immunological effectors initiated by adaptive immune responses and an essential homeostatic role in the clearance of damaged self-antigens. However, dysregulated classical pathway activation is associated with antibody-initiated, inflammatory diseases processes like cold agglutinin disease, acute intrava...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012